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Abstract. The use of density functional methods to calculate the structures and energies of clusters of atoms
is discussed. Applications to phosphorus and sulphur show that unexpected structures occur even in small
clusters. Calculations of many isomers of carbon clusters from C4 to C32 (n even) show striking results, with
periodic patterns in several structural classes. Gradient corrections are significant, but regular within a given
cluster type. Some strengths and limitations of the approach are discussed.

PACS. 36.40.-c Atomic and molecular clusters – 61.46.+w Clusters, nanoparticles, and nanocrystalline ma-
terials

1 Introduction

The organizers have asked me to make an assessment of the
status of cluster calculations using density functional tech-
niques. I shall restrict myself to clusters of a single element,
and focus on specific problems: How can one determine
the stable geometries of a cluster of n atoms, how can
one determine the most stable of these arrangements, and
how reliable are density functional methods in determin-
ing them? After outlining the problems facing any method
of calculating these properties, I shall indicate where the
advantages (and disadvantages) of the DF approach lie.
I shall show examples where DF calculations led to unex-
pected results, and show that results for carbon clusters
(n= 4−32) underscore both the strengths and weaknesses
of our approach.

2 Structure and function

The motivation behind the study of the geometrical ar-
rangement of any molecular or condensed matter system is
the relationship that exists between the structure and the
properties of the material. This is obvious to many physi-
cists and probably all chemists and molecular biologists.
In focusing on the geometrical structure and related prop-
erties, we address problems that are specific to individual
systems. It is not unusual, however, to find fascinating pat-
terns in families of related systems. Examples in the world
of atomic clusters are aggregates of different sizes of a sin-
gle element, or of different elements in the same group of
the periodic table. For most of these clusters it is difficult
to obtain unambiguous structural information, and theory
has a particularly important role to play. What problems

must we address when calculating the most stable struc-
ture of a cluster of atoms?

2.1 Total energy of atomic clusters

In principle, the stable geometries of atoms in any mate-
rial can be found if we can determine the total energy E of
the systems of electrons and ions. We adopt a set of nuclear
coordinates {RI}, determine E, and repeat the calculation
for all possible configurations. The most stable structure is
that with the lowest energy. There are two distinct prob-
lems associated with this procedure: the calculation of E
for a given geometry, and the determination of the most
stable amongst all the possible structures.

It would be natural to take advantage of the experience
of molecular physicists and quantum chemists and to de-
termine E from the exact many-electron wave function Ψ
of the system. Unfortunately the numerical effort required
is so great that accurate energies can be found only for sys-
tems with relatively few atoms. Nevertheless, the approach
remains an essential benchmark in the assessment of ap-
proximate determinations of the energy surface E{RI}.

The second problem – the determination of the most
stable of the structures corresponding to local minima in
the energy surface – is probably even more challenging.
The determination of the number of topologically distinct
structures (isomers) consistent with a given chemical for-
mula is one of the oldest in chemistry, and it has been
known for more than 100 years that the number of iso-
mers increases very rapidly with an increase in the num-
ber of atoms n. In the specific case of clusters interact-
ing with pairwise potential of Lennard-Jones type, Hoare
and McInnes [1] showed that the number of structures in-
creased from 2 to 988 as n increases from 6 to 13. For
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clusters of identical atoms interacting with a pairwise po-
tential, Wille and Vennik [2] showed, in fact, that the num-
ber of structures grows exponentially with increasing n.

These two problems – the calculation of E for a sin-
gle geometry, and the determination of the most stable
amongst the many possible – are immensely difficult and
often underestimated. While a solution of these problems is
not presently tractable, it is essential to address both. We
have used in much of our work the density functional (DF)
formalism [3] to evaluate E. The DF approach, with rela-
tively simple approximations for the exchange-correlation
energy, provides a tractable method for energy calculations
with predictive value in a range of systems. In order to
avoid unfavorable local minima in the energy surface, we
(and others) have often used a “simulated annealing” tech-
nique based on the scheme of Car and Parrinello [4]. This
combines molecular dynamics (MD) with energy and force
calculations using DF Methods. The result is a method
that is free of adjustable parameters, and the use of ele-
vated temperatures allows an efficient sampling of the po-
tential energy surface.

2.2 Some cluster energy surfaces

In this section I give three examples from our work that
should remind us that the cluster world is full of surprises.
The first two relate to small clusters of phosphorus [5], the
second to clusters of sulphur [6].

I have heard on several occasions that the determin-
ation of global minima should be easier than the above
arguments suggest, because the lowest energy minima are
surrounded by the largest basins of attraction. This is def-
initely not the case in P4, which has been known to have
a tetrahedral structure for over 60 years. The basin around
this minimum is, however, very narrow. If four P atoms are
placed at random positions, they are more likely to lie in
the basin of a much less stable “butterfly” (C2v) structure.

I have also been told on numerous occasions that the
determination of low-lying minima is aided by “intuition”,
which can apparently tell us that some structures will not
be favoured. A counter-example is provided by the P8 clus-
ter, which was assumed for decades to be perfectly cubic.
This structure has the three-fold coordination favoured by
this element, and a low strain should result because the px,
py, and pz orbitals are mutually orthogonal. The “simu-
lated annealing” strategy resulted, however, in two much
more stable structures [5]. The most stable – a C2v struc-
ture obtained by rotating one edge of the cube through 90◦

– is 1.7 eV more stable and is, in fact, a structural unit of
the violet allotrope of phosphorus.

The final example provides a demonstration of the fact
that the most stable isomer is not necessarily the one that
is seen in a measurement. In the case of sulphur anions up
to S−9 , we showed that there were stable anions with ‘chain-
like’ structures as well as the ring structures familiar from
studies of the neutral clusters [6]. The structures are shown
in Fig. 1, where we also show the corresponding ionization
energies, also known as the vertical detachment energies
(VDE). The VDE of the rings and chains are strikingly dif-
ferent. The broken rings show almost constant VDE with

Fig. 1. Vertical detachment energies of sulphur anions S−n ,
n= 1−9. Circles: experiment, crosses: calculations, including
values for helical chains. The bars cover the values for other
chain structures.

increasing cluster size, while the values for the chains in-
crease initially and saturate near S−6 . The comparison with
photoelectron detachment spectroscopy measurements [6]
proved to be particularly interesting, as two different ad-
justments of the beam source gave quite different spectra
for S−6 and S−7 . The remarkably good agreement with the
calculated values (see Fig. 1) for both rings and chains in-
dicated that different beam conditions gave rise to different
isomers, i.e., it is possible to generate chain-like isomers,
even though they are not favoured energetically. The rea-
son is simple: The number of possible open structures is
much greater, since the beginnings and ends of the chains
are not constrained to coincide, and chain formation will
be favoured if the time available for cluster formation is too
short to allow annealing.

3 Carbon clusters, Cn, n = 4 – 32

We now turn to the results of recent calculations on car-
bon clusters. The identification of carbon cluster cations
C+
n up to n= 190 [7] and the postulation of the “fullerene”

structure for C60 [8] caused an explosion of interest in car-
bon clusters. The possible mechanisms for formation of
larger carbon clusters – often cagelike structures compris-
ing hexagons and pentagons [9] – has focused attention in
turn on smaller clusters and the relative stability of their
isomers. The mass spectra for carbon clusters are distinctly
bimodal [7], with clusters for n ≥ 32 occurring mainly for
even values of n, while smaller clusters occur for all n. It
is often assumed that this break arises from a transition to
structures that are formed by pentagons and hexagons [10].
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Fig. 2. Structures and energies – relative to the monocyclic
ring – of isomers of C24. LSD and BP values are connected
by lines representing the structural type: full, cages; dotted,
double rings; crosses, chains; squares, graphitic; dash-dotted,
monocyclic rings. The structures are ordered from below ac-
cording to the LSD energies.

A study of many isomers of Cn clusters (n = 4− 32)
has been carried out using DF methods with both LSD
and gradient-corrected approximations (BP, [11]) for the
exchange-correlation energy. The clusters of between four
and ten atoms allow comparison with earlier work, but the
existence of stable cage structures for C8 and C10 were un-
expected results. The number of possible isomers increases
very rapidly with increasing cluster size, and it is not pos-
sible to study all in clusters with up to 32 atoms. Neverthe-
less, the extent of the present survey enables us to identify
unambiguously several bonding trends.

The structures and relative energies presented below
were determined using all-electron DF calculations with an
extended Gaussian basis set [12]. Full details of all clus-
ters will be given elsewhere [13], and we show the results
for the representative case of C24 in Fig. 2. Energies of
different isomers are shown relative to that of the mono-
cyclic ring structures, and the lines joining the LSD and
BP values represent the structural type: Full lines indicate
cages, dotted lines with solid triangles represent double
rings, and “graphitic” structures (squares) include both
planar (“plate”) and bent (“bowl”) forms. The isomers of

a given cluster are labeled according to the relative energies
of the LSD calculations.

The fullerene structure 24(1) is more stable than the
other cages 24(2) and 24(5), both of which contain four-
membered rings. The graphitic structures 24(3) [D6h] and
24(4) [Cs, the C20 bowl with four atoms added to form a
“ladle”] are amongst the most stable. The structural dif-
ference between 24(3) and 24(4) may be viewed as the
transfer of a four-membered unit from the planar structure
to form an external ring. The plate structure now has a cen-
tral pentagon and forms a bowl to lower the strain. The
energy difference between these structures is 2.0 eV (LSD).

Graphitic structures and bicyclic rings are found for
all clusters, and there are non-planar (buckled) forms of
each for C16 and C20. The monocyclic rings are more stable
than the bicyclic forms in all clusters. The bicyclic rings in
C24 are planar, and all show show low-frequency vibration
modes (≤ 30 cm−1) corresponding to out-of-plane bend-
ing. This suggests that they will convert readily to more
stable, three-dimensional structures.

The calculated cohesive energies (binding energies per
atom) of the most stable isomer of each type are shown
in Fig. 3 for all clusters. LSD calculations predict that
cages are the most stable isomers for n ≥ 18, and there
are stable cage structures for all n ≥ 8. C24 is the first
cluster for which cage structures are unambiguously the
most stable in both LSD and gradient-corrected calcula-
tions. Figure 3 shows that gradient corrections lower the
LSD values of the cohesive energy by ∼ 1 eV, a change
similar to that found in clusters of other main group elem-
ents [14]. However, the effects of gradient corrections on
the total energy are quite different for different structural
types (see also Fig. 2). They are smallest in cages, fol-
lowed by the graphitic (plate) and double ring structures,
i.e., the effects increase as the average coordination num-
ber decreases. There are fewer bonds in the (metastable)
linear chains than in the monocyclic rings, and the gra-
dient corrections reduce the energy difference between
them.

It is clear from Fig. 3 that gradient corrections have
a large effect on the relative energies of Cn isomers and
change the predictions for the most stable isomers in
several cases. The unambiguous experimental determin-
ation of cluster structures would then provide a direct test
of the relative merits of different approximations to the
exchange-correlation energy. Nevertheless, the relative en-
ergies of the isomers are remarkably similar within a given
structural family (the lines connecting LSD and BP results
are nearly parallel in all cases), i.e. the bonding errors are
similar in similar bonding situations.

This fact has been used by Raghavachari [15] in an in-
teresting study of the low-lying isomers of C20. If we con-
sider “isodesmic” reactions, in which the number of bonds
of each formal type is conserved, then errors in energy dif-
ferences may be minimized. Raghavachari was able to re-
late the formation energy of the ring isomer of C20 to the
heats of formation of acetylene and diacetylene, and that of
the bowl isomer to those of ethylene and benzyne. The final
result was that the bowl and cage isomers are compara-
ble in energy and significantly (∼ 1.4 eV) more stable than
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Fig. 3. Cohesive energies of the most stable of different types
of Cn isomers. See caption of Fig. 2.

the ring. A suitable choice of reaction paths could provide
reliable information in other clusters as well.

There are other trends apparent in Fig. 3. The first is
the fourfold (“n= 4N + 2”, N integer) periodicity evident
in the binding energies of the monocyclic rings. This is
related to the Hückel rules for the stability of aromatic
molecules and was observed long ago in semi-empirical
calculations of Cn rings [16]. In the present calculations
these rings are “cumulenic” (with identical bond lengths)
in C14, C18, C22, ... , but “polyacetylenic” (with alternat-
ing bond lengths) otherwise. A similar periodicity is evi-
dent in the planar structures with triangular units, such as
24(9). These triangles occur singly in the family n = 4N ,
but in pairs in the clusters with n= 4N + 2. Other planar
structures show a similar, although weaker, periodicity.

4 Concluding remarks

Cluster science covers an area of immense variety, and
I have been able to cover exciting applications of dens-
ity functional methods to clusters. I have focused here on
the structural properties and their determination by total
energy calculations. I am convinced that geometric struc-
tures are of central importance in this field, and I hope that
I have convinced you that we have been surprised many
times in the past and can expect the same in the future.
In this field, as in most areas, progress will depend on the
close cooperation between theory and experiment.
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